ar X iv : m at h - ph / 0 31 00 47 v 1 2 3 O ct 2 00 3 Calculus on fractal subsets of real line – I : formulation

نویسندگان

  • Abhay Parvate
  • A D Gangal
چکیده

A new calculus based on fractal subsets of the real line is formulated. In this calculus, an integral of order α, 0 < α ≤ 1, called F α-integral, is defined, which is suitable to integrate functions with fractal support F of dimension α. Further, a derivative of order α, 0 < α ≤ 1, called F α-derivative, is defined, which enables us to differentiate functions, like the Cantor staircase, " changing " only on a fractal set. The F α-derivative is local unlike the classical fractional derivative. The F α-calculus retains much of the simplicity of ordinary calculus. Several results including analogues of fundamental theorems of calculus are proved. The integral staircase function, which is a generalisation of the functions like the Cantor staircase function, plays a key role in this formulation. Further, it gives rise to a new definition of dimension, the γ-dimension. F α-differential equations are equations involving F α-derivatives. They can be used to model sublinear dynamical systems and fractal time processes, since sublinear behaviours are associated with staircase-like functions which occur naturally as their solutions. As examples, we discuss a fractal-time diffusion equation, and one dimensional motion of a particle undergoing friction in a fractal medium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 31 00 10 v 1 8 O ct 2 00 3 Obstructions , Extensions and Reductions . Some applications of Cohomology ∗

After introducing some cohomology classes as obstructions to orientation and spin structures etc., we explain some applications of cohomology to physical problems, in especial to reduced holonomy in M and F -theories.

متن کامل

ar X iv : 0 90 6 . 06 76 v 1 [ m at h - ph ] 3 J un 2 00 9 Calculus on Fractal Curves in

A new calculus on fractal curves, such as the von Koch curve, is formulated. We define a Riemann-like integral along a fractal curve F , called F α-integral, where α is the dimension of F . A derivative along the fractal curve called Fα-derivative, is also defined. The mass function, a measurelike algorithmic quantity on the curves, plays a central role in the formulation. An appropriate algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003